Tsallis statistics and fully developed turbulence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34673
(http://iopscience.iop.org/0305-4470/34/3/501)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.97
The article was downloaded on 02/06/2010 at 09:09

Please note that terms and conditions apply.

Corrigendum

Tsallis statistics and fully developed turbulence

T Arimitsu and N Arimitsu 2000 J. Phys. A: Math. Gen. 33 L235-L241

Less accurate numerical values were given in the original table 1 than are now presented in the revised table 1 below. Accordingly, the previously published versions of figures 1 and 2 differ slightly from the revised versions below.

For $\mu=0.235$ (case d in table 1), the values of some other parameters should also be corrected, such that the paragraph between equations (28) and (29) should now read as:

For $\mu=0.235$ [8], we have $q=0.380, \alpha_{0}=1.136, X=0.279$ (case d in table 1). Then, we obtain $\alpha_{+}-\alpha_{0}=\alpha_{0}-\alpha_{-}=0.674, \alpha_{\max }-\alpha_{0}=\alpha_{0}-\alpha_{\min }=1.139$ and $\bar{q}\left(\alpha_{-}\right)=-\bar{q}\left(\alpha_{+}\right)=3.709$.

Table 1. Parameters q, α_{0} and X for several values of μ.

	μ	q	α_{0}	X
a	0.175	0.207	1.100	0.206
b	0.200	0.288	1.115	0.237
c	0.225	0.356	1.130	0.267
d	0.235	0.380	1.136	0.279
e	0.250	0.413	1.145	0.298
f	0.275	0.462	1.159	0.328
g	0.300	0.504	1.174	0.358

Figure 1. Scaling exponents ζ_{m} of velocity structure functions. The present result for $\mu=0.235$ is given by the solid curve. The solid triangles are the experimental results by Anselmet et al [11]; the squares and the circles are from [5]. K41 is given by the dotted line, the β-model ($D_{\beta}=2.8$) by the dashed line, the p-model $(\mu=0.235)$ by the dotted-dashed curve, the log-Poisson model by the short-dashed curve and the log-normal model $(\mu=0.235)$ by the double-dotted-dashed curve.

Figure 2. Scaling exponents ζ_{m} for the cases in table 1.

